
Worms of the future
Trying to exorcise the worst

Copyright © Nicolas STAMPF
<stampf.wf@free.fr>

with inputs from
Philippe 'BooK' BRUHAT
& François MAUCHAMP

Version October 2, 2003

This is a research paper on the security (or lack of) within computer
systems and ways of improvement with respect to mobile and hostile
code such as worms.

In no way does the author of this paper endorse worm writers nor their
activities.

This paper should be regarded as just that: a source for further
research on the topic and, in the end, potential security improvement.
It can be viewed as an encouragement for CIOs (Chief Information
Officers) to reinforce their security through review of their security
policy and quicker patching of their systems.

Table of Contents
1. Introduction... 3
2. Present worm vulnerabilities..................................... 3

2.1 Approach... 3
2.2 Processing.. 3
2.3 Storage..4
2.4 Transport.. 4
2.5 Author's protection... 5

3. Possible worms evolutions.. 5
3.1 Processing.. 5

3.1.1 Protection from reverse engineering....... 5
3.1.2 Improving code maturity.......................... 6
3.1.3 Keep a low profile.................................... 6
3.1.4 Adaptation to environment...................... 7
3.1.5 Payload.. 7
3.1.6 Protecting against protections.................8

3.2 Storage..8
3.3 Transport.. 8

3.3.1 Discretion... 9
3.3.2 Signature..9

3.3.3 Polymorphism.. 9
3.3.4 Avoid network congestion......................10
3.3.5 New moving paths................................. 10

3.4 Author's protection... 11
3.5 The worst possible picture.............................. 11

4. Protection from doom... 11
4.1 Keep security up to date.................................12
4.2 Processing.. 12

4.2.1 Protect from infection............................ 12
4.2.2 Prevent them from acting when infected...
14

4.3 Storage... 14
4.4 Transport.. 14

4.4.1 Understand code semantics at firewall
level... 14
4.4.2 Detect uncommon behavior...................14

4.5 Author's protection... 15
5. Conclusion... 15
6. References.. 16

1

Worms of the future

1. Introduction
According to [Wikipedia], a worm could be

defined as: a self-replicating computer
program that does not need to be part of
another program to propagate itself.

This document is an attempt at predicting
the worst possible future of worms, given the
current computer science possibilities.

Up to now, we've seen many different kind
of worms, each new generation improving on
the precedent. The fact is that all such threats,
for now, have suffered from a few
vulnerabilities that prevented them (much to
our relief) from functioning to their full
potential. Some have achieved their result to a
greater extent than others, but none of them
seem to have realised the greatest fear:
wreaking havoc on the Internet and on
Informations Systems on a global scale
(although some have come close).

This document tries to look at these
present vulnerabilities from a security point of
view (that is, by considering the Confidentiality,
Integrity and Availability of worms) and in the
next chapter, how to maintain these security
requirements throughout the life-span of the
worm, that is to say, as long as possible.
Following this, the document then attempts to
provide hints on solutions that could be used in
defense against new threats.

As it has been pointed out to me, other
similar papers exist, one of them being
[Warhol]. Surely a nice complementary
reading to this paper.

2. Present worm
vulnerabilities

This chapter briefly analyzes the present
“vulnerabilities” in worms that prevent them
from functioning to their full potential. These
vulnerabilities won't be detailed too much as
the path to stronger design is often rather
obvious. Further improvements will be better
described in the next chapter.

2.1 Approach
This document approaches the security

aspect of worms through classical paths. A
worm is mainly considered during Processing,
Storage and Transport during which
Confidentiality, Integrity and Availability must
be preserved for the worm to continue to act
properly.

Given that, a worm has mainly three
activities:

— look for machines to infect: a worm can
only counts on itself to propagate. As
such, one of its tasks is to look for other
machines to infect, using communication
channels (mainly networks, but other
potentials are InfraRed, Bluetooth, Wifi,
serial, etc.)

— propagate to these machines: when a
suitable destination has been found, the
worm must transfer its code to it. For this
purpose, it must rely on the presence of
one or more vulnerabilities, either
because of a bad design, or of badly
configured software running on the
destination computer.

— execute the payload: recent worms just
replicate, but some of them (more by the
past) try to cause damage to the
computer on which they reside, usually
at a specific date (all worms triggering at
the same time).

All of these worm tasks will be analyzed in
the rest of this paper.

2.2 Processing
Worms tend to protect their existence. For

this purpose, they usually apply different
tactics, some of them having their own intrinsic
vulnerabilities:

— Intercept interrupts and check whether
the worm's code in memory is being
edited or not. This indeed has been a
form of protection which was adopted
early on by some old viruses. Quite
efficient when you're not aware of it, but
can easily be circumvented by
debugging with care.

— Check the code's signature for
modifications: this prevents in-memory
modification of the code to bypass
protections. But if the code can be
patched in memory, so can the
verification procedure.

2

Worms of the future

— Encrypt the worm's code. Again, since
the code needs to be decrypted before
being executed, one can let the worm
decrypt itself and analyze the code later
by a careful use of breakpoints.

Some of these protection measures have
been used by software companies to protect
their code against unauthorized copies for
quite a long time. The pirating industry made
clear long ago that these solutions are not
100% efficient. In fact, no 100% software
protection solution can be fail proof [BS1]
simply because software codes have to be
exposed on an owner's machine in order to be
executed, over which they have complete
control.

In the end, the biggest problem a worm has
to face is the reverse engineering of it's code.
It must attempt to avoid this as much as
possible to prevent early analysis and a cure
for the infection.

Another huge problem with worms
processing is the relatively poor quality of their
code: lots of bugs often prevent worms from
functioning properly, thus resulting in poor
infection and replication rates hence a short
life time. We've seen lots of worms depending
too much on the version of the operating
system, for instance, to function properly (such
as language regionalization, for instance).

2.3 Storage
Storage of code renders it vulnerable to

easier analysis. Storage has often been seen
as the solution to lengthen a worm's life by
enabling relaunch after reboot. However,
storing a worm's code on disk (or non-volatile
memory) has some drawbacks:

— Storage of the worm's code on disk and
configure it for automatic reload at boot
time. The main vulnerability with this
approach is to lay the worm's code open
to possible analysis.

— Storage of the worm's code into on-disk
data of other software packages by
modifying it to relaunch the worm when
the software is executed (this is a virus-
like behavior). This is a better solution as
the worm is hidden and must first be
found. This is security through obscurity,
however, and doesn't usually resist
strong research.

— Not store the worm's code at all except
in RAM. Though the least efficient
solution as Availability is concerned, this
probably is the better long term solution:
should the computer be rebooted, the
worm would die. But chances are that
the computer will quickly be re-infected
by its neighbors, so this is not, all in all, a
definitive problem. This was the solution
of choice for worms at the time of writing
this paper.

As a conclusion, it can be seen that storing
a worm's code has some problems as well as
advantages, and both should be balanced with
regard to the worm's action.

Note that we're not even talking about
encryption on disk, as that would imply a
decrypter with the key visibly available
somewhere, thus rendering the whole thing
useless. The decryption key could, however,
be stored somewhere else and not be
available at the moment that someone tries to
reverse engineer the code.

2.4 Transport
Another activity of a worm, besides

executing its payload on a computer, is to
transport itself from one place to another,
infecting the maximum possible number of
computers. This activity, a fundamental part of
a worm's life, is also at the root of its main
problems:

— When a worm has started to infect
computers, it also starts to replicate and
transport itself on networks.
Consequentially, traffic exponentially
increases with each new generation of
worms, causing network congestion and
raising IDS alarms. This results in the
worm being eventually detected.

— As a worm has to travel across networks
it will, sooner or later, trigger an IDS that
will start recording traffic and result in the
worm's code being saved on disk. Once
this is done, an anti-virus signature can
then be crafted for that worm which
could then be detected and blocked
(without talking about analysis). The
current solution to this problem is to use
a polymorphic code decrypter when the
main code is encrypted.

3

Worms of the future

2.5 Author's protection
One fundamental problem for virus writers

these days is the law. Indeed, quite a number
of authors of the recent most effective worms
have been chased and caught: everybody
knows that your activity can very often be
traced back up to your Internet connection.
This is simply because you have to connect
from somewhere, hence have a login, a
password and a phone number to access the
network (or cable connection, DSL line, etc.)

Of course, virus writers can use relays,
anonymizers and all manner of gadgets to
masquerade their true identity and origin, but
there are still other means (at least statistically
through studying the propagation of the
infection and by studying the virus's code and
the hackers community to find the author).
This most often also implies a form of
cooperation between network administrators
and international law enforcement agencies.

3. Possible worms
evolutions

This chapter tries to analyze some possible
worm evolutions in terms of technology in
order to improve their security, thus rendering
their detection and/or eradication more
difficult. The following chapter will then try to
investigate possible protection measures that
could be crafted against such improvements.

3.1 Processing
Regarding processing, we've highlighted

the two main problems with worms' code:

— a need to protect itself from reverse
engineering;

— a lack of quality.

In addition, we present further
improvements to worm code, not related to
actual vulnerabilities.

3.1.1 Protection from reverse
engineering

There are most likely many possible
solutions to this problem. We're trying to

highlight some of them below.

3.1.1.1 Prevent debuggers from
viewing the code

As there are kernel modules (dynamic
kernel patches or dynamic libraries) that can
render processes, files or network connections
invisible to other processes, one can imagine a
solution where some piece of memory would
not be easily viewed (either by forbidding it
from being read without the right privilege or by
placing it outside the program address space,
for instance). One needs to investigate the
possibilities of a Pentium's (and other
processors) capabilities within this domain.

3.1.1.2 Detect debuggers in real time
The most evident solution is to try to detect

a running debugger in real time and block the
computer if this is the case.

This solution is already implemented in
some Copy Protection schemes to avoid
reverse-engineering and removal of the
protection.

The reader is advised to check the Internet
for solutions on that topic, but we can already
give a few hints:

— intercept debugging traps and check
registers: if one of them points to the
worm's code at the time of interruption,
block the computer;

— intercept frequently raised interruptions:
clock, mouse, disk I/O, etc.: each time,
check registers as above.

3.1.1.3 Prevent debuggers from
debugging

Preventing debuggers from functioning
properly is mainly a matter of preventing the
user from easily tracing the worm's code. We
can imagine the following scenarios:

— encrypt the code. For better efficiency,
the code may be chunked and every
piece of it encrypted with a different key
or algorithm.

— Use system parameters as decryption
keys (or even better, a hash of different
parameters): if system configuration
changes (debugger trapping, interrupt for

4

Worms of the future

instance), the code can't be decrypted
(provided the interrupt handler is
included in the hash).

— Use concurrent threads to handle pre-
decryption and post-re-encryption or
deletion of the code. If the computer gets
slowed down, desynchronisation occurs
and the code fails (or the computer may
crash if the worm's code runs with the
maximum of privileges such as Intel x86
ring 0 for instance).

— Have hashes being computed by threads
concurrently and used asynchronously.
With asynchronous threads handling
decryption and encryption ahead and
after the Instruction Pointer, one could
imagine an ever changing code.
Changing the speed of the code
execution through debugging, will stop
the worm from functioning, remaining
encrypted and crashing the computer.

— Time protect the encryption by including
the time in the decryption key: if it's not
the right time, the code can't be
decrypted.

— Store decryption keys somewhere else,
possibly on an Internet connected
machine under control of the worm's
author. Or use chatting networks to get
the key (real-time chatting networks
[such as IRC, ICQ, etc.] are quite
dangerous for the worm author's own
privacy, whereas non-connected chatting
networks [such as usenet news for
instance] are quite convenient for this
purpose).

— Have multiple processes running on
multiple machines (not necessarily the
same architecture) cooperating to build
the code or decrypt one another (by
transferring decryption keys across
processes). Parallelism might be a new
way for worm code to work.

Of course, these protection measures are
not 100% secure. They can't be. But they can
be a real nuisance for an anti-virus company
that would need to debug a worm's code and
implement appropriate patches to provide
protection against it. More time for the worm
would mean more time for infection.

3.1.2 Improving code maturity
This can only be achieved by developers

through maturity and by taking time to test and
develop their code.

Through maturity disappears frenzy, and
thus better code can be achieved.

Chances are that the more divergence
between governments and hackers/crackers
there is, the deeper the hacker's involvement
in gray to black hat activities will get.

3.1.3 Keep a low profile
Keeping a low profile for a worm means

reducing immediate and obvious actions right
after infection to avoid early detection. The
longer a worm manages to rest discreet, the
higher the number of hosts it will be able to
infect prior to detection.

Later on, all worms may wake up on a
single signal, through a worm-net for instance.

Alternatively, each worm may wake up at a
random time, way later.

One could imagine a discreet payload or
one that comes along with the signal to wake
the worm (indeed, this solution has been
already implemented by the latest big worm
that we've seen: [SoBig.F], though not with
exactly the same scheme).

Finally, one could imagine worms in a
defined environment (company) that all wake
up at the same time when the system
administrator tries to deactivate one of them.

3.1.4 Adaptation to
environment

To be successful and live long, a worm has
to adapt to its environment. This means
updating to new vulnerabilities and even new
architectures.

Possible solutions are:

— connect to Internet places to download
plug-ins. These must be verified for a
valid signature in order to avoid installing
a killer plug-in ... Also, the worm will
need to take care while using the
standard Internet connection method of
the computer on which it resides, to
avoid being spotted (use the host's proxy

5

Worms of the future

configuration or replay authenticated
packets through the proxy, for instance)

— use various sources for updating: there
are usually more than one
communication channel with Internet.
One can expect any of the following:

— web access (with or without a proxy,
with or without authentication);

— SMTP (or other protocol) mail
access;

— news (NNTP) access;

— the path the worm itself took to come
from (i.e. download other code from
the remote computer it came from, in
a kind of worm-net);

— other covert channels above IP:
sequence numbers, flags, timings...
(although not all of them might be
available through a firewall);

— direct access, which opens a wide
range of possibilities among which:
IRC, P2P networks, possibly with
anonymity (see [6/4] for instance or
[FreeNet]); such communication
channels should mainly focus on
avoiding a single point of command
(to kill the worm or to find all of them).
One could also consider it as a
means of gathering statistics or
passing messages from the author to
the worm population.

— IPSec (on top of IPv4 or embedded
on Ipv6);

— (SSL) tunnels through HTTP/S
proxies which allows for any kind of
embedded protocol inside the tunnel;

— use multi-architectural code: for one
processor (i686 for example) the initial
code acts as a 'jump' command directly
to the worm's dedicated code whereas
on another processor (say, SPARC) it
simply executed an instruction without
side-effect. The following part of the
code being the significant part related to
this processor. This has already been
used for cross-platform buffer overflows.

3.1.5 Payload
The very first viruses and worms in

existence often used to carry a destructive
payload. That's rarely the case today, but this
may change.

We could imagine the following examples
of payloads, however it might be noted that the
options for creativity in this domain are more
vast than in any of the other chapters of this
paper.:

— destructive payload: wipes hardrive, re-
flash BIOS with zeros;

— re-flash BIOS to incorporate the worm's
code;

— edit documents in subtle ways: lightly
edit dates, change numbers (significantly
less obvious to the naked eye): imagine
the consequences for contracts, medical
registers, banking applications, etc. But
one might also wonder if an attacker
would take the risk of inadvertently
changing his own medical records or,
more significantly, directly kill people
because of his worm's effects (in case of
hospitals getting attacked by the worm).
On the other hand, would terrorists care
about that? Wouldn't they be on the look-
out for just such a destructive payload?

3.1.6 Protecting against
protections

For all of the solutions presented above, it
can be useful for the worm to regularly check
whether its measures of self protection are still
present and working. Cross checking is even
better: this can be done through cryptographic
signatures for instance. Simple CRCs are not
enough as they can be recomputed by the
reverse engineer.

Again, not all protection measures are
100% secure, but they can be hard enough to
circumvent to let the worm “sufficiently”
propagate.

Some paths that may be interesting to
follow on this subject include:

— Zero Knowledge Proof [] to check that
the code is correct (proof without
revealing the code);

— Identity-Based Encryption [IBE] might be
worth a look by using the code as the
public key and using an external service
(not under control of the infected

6

Worms of the future

machine) to provide the decryption key;

— Elliptic Curve Cryptography [ECC] is also
interesting for its rapidity.

— Exploit multiprocessor computers to
have multiple part of the worm running
concurrently and checking the status of
each other at random.

3.2 Storage
As we've said before, storing its code

somewhere would probably be the worst thing
that a worm could do today. It's an invitation to
reverse-engineering. It's like an autopsy: you
can see whatever you want and take your time
doing so: the body is dead and won't stand in
your way.

A few notes on EPROM and programmable
BIOS: if the worm infects the BIOS by means
of re-flashing, it can gain more life than
expected, or at least until anti-virus vendors
figure this out and reverse-engineer the
PROM. It is also, however, a form of storage
as well with the corresponding vulnerabilities
(see 2.3 - Storage).

One solution could be to hide the worm's
code on another platform: use Unix machines
to infect Windows, and Windows to infect
Macintosh (for instance). Once a platform has
been cured, chances are that the system
administrators will look for the worm on other
similar platforms, when in fact it's hidden
somewhere else. See point “3.1.4 - Adaptation
to environment”, about multi-architectural
code. Similar solutions involve LAN attached
hard disks, open web sites, FTP sites, open
network shares, etc. One can also imagine the
use of a PDA to host the code intended to
infect desktop computers during
synchronization.

If the worm's code is stored on disk, it could
be encrypted and the decryption key could be
stored/available somewhere else, possibly as
a temporary measure. One could imagine a
place that renders the key available only at
predefined hours, with worms regularly polling
the web sites. Or another process, running on
another computer (possibly on another
architecture) that sends the key over the
network at predefined intervals: the worm
would have to sniff the network to get it. The
code sending the key would conceal its origin
by trying to masquerade as another host,

spoof source addresses for example (MAC
spoofing is especially useful to avoid easy
detection). It could take hours or even days for
the key to be sent.

3.3 Transport
One of the main activities of a worm, hence

it is also a place for considerable
improvement.

Network flows can often be easily spotted
either because there are too many of them,
they are too big or use standard protocols
(UDP, TCP/IP) with non standard parameters
(such as non standard port, easily blocked by
firewalls, for instance).

The following possible improvements to
worms quickly come to mind.

3.3.1 Discretion
— Avoid too many connections: it's

probably better to send one big packet
than many small ones. This, however,
needs to be checked against statistics
on a network full of worms uploading
themselves across the globe. The idea
here is that IDSes often neglect packets
when they are only few in numbers and
only raise alarms on crowd detection, to
avoid too many false positives.

— Try to blend into legitimate traffic: if using
HTTP as a transport protocol, then
connect through the proxy as a normal
client would do.

— Spoof source addresses whenever
possible and sniff for responses.

— A tool (or badly coded piece of software)
had been causing some trouble on
Internet during the summer of 2003,
sending source spoofed packets that
were TCP SYN with a window size of
55808. Supposedly a proof of concept
(although defective) mapping software
package, it could also have been some
form of command for a discreet worm,
with data being encrypted in the packet's
payload. This is an interesting approach
to sending packets to an installed worm
base without directing them to the worm
(hence revealing it). The worm has to
sniff the network to get its commands.

7

Worms of the future

3.3.2 Signature
The main problem of a worm in transit is its

network signature in IDSes. The signature can
be made of:

— a stream of bytes

— a behavior

Trying to avoid both is the worm's best
move.

Possible solutions for avoiding these
problems is to:

— use lots of different transport solutions,
like different protocols, encrypt traffic,
use dynamic ports, etc.

— Another would be to use polymorphism.

Another approach is to use IDS signatures
for other signs of attack, to flood IDSes. By
sending lots of signatures, IDSes will start to
work overtime. In a high traffic environment,
this can result in either:

— IDS missing some packets;

— the security administrator in charge of
the IDS being unable to monitor all the
alarms at the same
time (and not
knowing which ones
are for real).

3.3.3
Polymorphism

Polymorphism is a
protection by which a
code changes itself to
avoid recognition and
signature making. We
can envisage different
kinds of polymorphisms:

— using encryption:
the code is
encrypted with a
different key each
time it gets
transferred on the
network. The main
obstacle is that the
decryption code
must be made

readable and from this, a signature could
be made.

— Using code mutation to do the same with
different assembly operations. For
instance, to put 5 in a register could be
as simple as that, or putting 10 and
subtracting 5, or putting 4 in a place,
reading that place in the register then
adding 1, etc. That could be used for
decoding a portion of the code
mentioned above. See [ADM] for an
example of NOP mutations (this would
need to be adapted for other instructions,
possibly respecting the “no zero byte”
constraint).

— In case a smart debugger is created that
analyzes code behavior to bypass the
polymorphism described above, one
could imagine the separation of the code
into blocks of independent actions and
have them executed in as many different
orders as possible. Checkpoints would
be needed at some time, but that could
change the order in which the code
executes, without changing the overall
result of operations. See Illustration 3.1 -
Polymorphism.

[Phrack#61]
implements an
improved
polymorphism in order
to avoid the spectrum
analysis of traffic. This
has yet to be included
in a worm's code, but
given that the tool is
available, it could be
just a matter of weeks
until it's put into
practice.

8

Illustration 3.1 - Polymorphism

A

B

C

X

Y

Checkpoints

A B C X Y

A BC XY

AB C X Y

Variant 1

Variant 2

Variant 3

In this example, there are 3!+2! variants
that's 8

Direction of code execution

Worms of the future

3.3.4 Avoid network congestion
Another problem that worms face is often

their huge impact on network bandwidth. A
high rate of infection means a high number of
worms roaming on networks and thus
negatively affecting bandwidth.

This is sometimes the sign of something
bad going on.

A worm could avoid this problem by
decreasing its expectations in terms of
infection rate, in favor of a prolonged life-time.
This would imply that each generation of the
worm is slower to infect further computers.

The rate of infection would be calculated on
the percentage of hosts vulnerable to infection
and the number of other hosts each infected
computer is willing to infect. Indeed, this has
already been researched in [AAWP].

3.3.5 New moving paths
Given the latest technology available, new

paths of infection arise:

— WiFi communication channels: while it
used to be safe enough to avoid
connecting to unknown networks, WiFi
technologies have a tendency to make
the machine onto which they are
installed adopt a state of permanent
connection (or connect to whatever
network is available in the vicinity of the
computer). Given the relative poor
workstation security, this provides a
great opportunity for worms to infect
neighboring computers.

— Infrared beams: usually only used for
serial communication, [IrDA] can allow
the direct transfer of objects to the
remote peer (try placing a PalmOS
device in front of a Windows laptop: they
both automatically connect together).

— Bluetooth: super small radio connections
with built in magic that allows the transfer
of information between the
communicating devices. As security is
often relatively complicated to configure
(when configuration is even available),
this also provides a potentially easy way
of infecting devices.

Finally, imagine a worm that uses other
platforms to host its code and new moving

paths to infect computers. Such as a worm
moving from PDA to PDA (or phone) through
IrDA or Bluetooth and infecting the computers
that it connects to, then again moving from
computer to computer and infecting other
PDAs. The more infecting vectors there are,
the more difficult it will be and longer it will take
to get rid of the worm. Did I mention the
permanently connected phones and PDAs that
use [I-Mode]?

3.4 Author's protection
Now, the last point left is the protection of

the worm's author. If you had written a worm
implementing the preceding functionalities,
would you really want police forces from all
over the globe after you? I'm sure you'd prefer
to remain as anonymous as possible.

Fortunately for you (unfortunately for the
police), one of the latest breakthroughs in
technology can help you: WiFi. More precisely,
free, anonymous WiFi.

Nowadays, just by roaming around any big
town, one can find dozens of (if not more)
freely accessible connection points, either
because of mis-configured equipment or
because the place is truly letting everyone use
it. It's just a matter of using the facilities of a
cybercafé without entering the premises.
Nothing to pay, no risk of being video-
recorded. Nothing. Consider WiFi communities
for example, restaurants and cafés offering
free WiFi access (McDonald's for instance)...

Coupled with a small worldwide community
of pirates that launch infections throughout the
world, this concept starts to sound quite
frightening.

Furthermore, it can often prove difficult to
find the first computer(s) to have been
infected. By using poorly configured WiFi
Access Points, an attacker (or community of)
can infect different companies across the
planet and consequentially greatly increase the
initial rate of infection. Having multiple,
simultaneous sources of infection also greatly
increases the difficulties faced when
attempting to trace the infection back to it's
origin(s).

9

Worms of the future

3.5 The worst possible
picture

Well, what could be the worst possible case
when we try to assemble all of the preceding
points? Here is a glance, your imagination may
vary:

There could be a sort of generic worm
engine, providing meta-functionalities such as
polymorphism, exploitation of vulnerabilities,
transportation and payload execution, plus an
additional update mechanism. All of them,
including the update mechanism, would be
implemented as replaceable and sequence-
able plug-ins. That means, you could replace
the meta-functionality, add or remove plug-ins,
possibly having more than one available at a
time. Which means the worm could update
itself to reflect the latest security vulnerabilities
available. While the first version would
transport itself using, for instance, a web
vulnerability, the next generation could use the
same vulnerability along with a new one (RPC
for instance) plus a communication channel
across Kazaa (which would then be modified
for eMule), then gets its polymorphism engine
changed to increase its entropy, etc. The
update mechanism would naturally be capable
of knowing when an exploit is outdated
because it is not efficient enough in attacking
computers with regards to other more recent
ones: this would allow the worm to control the
size of its code.

Could it be that with a sufficiently quick
code writer base, the worm would get updated
so rapidly and often that it would defeat any
possible destruction by anti-virus companies,
possibly running indefinitely (or at least as long
as worm code writers keep updating it and
don't get caught), always exploiting the latest
holes?

4. Protection from
doom

After exposing the possible worm
improvements above, this chapter attempts to
identify current ways of protecting against such
threats, as well as give hints on future
research that may need to be conducted to
protect from what could be described as

“intelligent” worms.

4.1 Keep security up to date
That probably seems an obvious

suggestion, but some people still just forget
about it.

Unfortunately, lots of system administrators
simply don't have the time to keep up with the
high number of patches and new versions
being released every week or month.
Obviously, some fundamental efforts should
be made in this area before even considering
moving on to some of the more specific
solutions as suggested.

As patch application is often difficult
because they need to be validated before
going into production, one could imagine a
rollback possibility so that in case of a patch
failure, the system could be quickly restored to
its previous state in order to reduce the down-
time of a machine. Windows XP [WXP]
implements such a concept of rollback.

Another useful initiative to be used in
conjunction with patches is the Application
Vulnerability Description Language initiative
[AVDL]. Carefully used with IDSes, firewalls
and patch management, it could be an
incredible tool to:

1 – check for vulnerabilities,

2 – patch vulnerable systems

3 – protect unpatched systems from
attacks

4.2 Processing

4.2.1 Protect from infection
This is the main action that should be

carried out: protecting from infection.

As far as stages in security functionalities
are concerned, this is the first to consider:
Prevention. Detection comes later. As for
Recovery, there's probably not much that can
be done other than the current implemented
solutions: backups and continuity plans.

4.2.1.1 Change OS kernels
One can consider modifications in

Operating System kernels. A few come to
mind when dealing with processes.

10

Worms of the future

Non executable Stack
Just when data structures for a new

process are being set up, it can prove useful to
mark the stack space for this process as being
non-executable. This solution is quite effective
in rendering most buffer overflows ineffective.
Indeed, this has already been successfully
implemented in Linux (in OpenWall, see
[LNESP]) and Solaris (option
noexec_user_stack in /etc/system).
Few software packages should be impacted by
such a measure.

Non executable data memory
By transforming the data portion of

software code as being non executable, one
can further increase the protection of non
executable stack (see above).

Both solutions involve setting a flag during
memory allocation to prevent execution by the
processor. Not all processors may allow such
a solution, however. There have been some
messages exchanged on this subject in the
ia64 Linux mailing-list [NEDM].

Read only code
This solution is to mark the code in memory

as being non writable. This is just in case the
software is tricked into loading, or easily
changing a new portion of code to change its
behavior. This has already been implemented
in lots of operating system.

Signed software code
Another solution could be to digitally sign all

software code (whether in extensions such as
DLLs, shared libraries, kernel modules or
whole executables) with a private key. Non-
signed code is denied access and/or execution
or constrained to sandboxes.

This has already been partly implemented
by Microsoft with Authenticode for ActiveX.
(See [Authenticode]). This solution could be
improved by requiring a Trusted Path from the
kernel to the user before accepting a new
signing key.

4.2.1.2 Change compilers
Different ways exist to improve security at

compilation time. However, this would require

a full recompilation of all software running on a
system, and that all software installed later be
compiled with the same measure of protection
as well. Gentoo Linux is one such distribution
([Gentoo]). Once the compiler is patched, all
can be recompiled.

Bound check variables at compilation
time

The first solution is to check variable
boundaries during code compilation and
refuse overflows. This might need a change in
language definitions (C family for instance) to
enforce this and a complete redesign of buffer
handling (auto grow, fixed chunks...) ADA as a
language does this kind of checking and could
be a source of inspiration [Ada].

Remove dangerous functions from
libraries

A few programming functions (most often
based on the C language) are vulnerable to
buffer overflow. While this is not the only
source of worm infections, removing these
functions or replacing them with other ones
could suppress a whole series of infections.

This would have a considerable impact on
software development however, and is not
very practical. But when considering Open
Source work such as that which is used in
[OpenBSD], this is surely one way forward
(“Only one remote hole in the default install, in
more than 7 years!” as of 2003).

Another solution could be to carry out some
special checking when one of these functions
is used. See [LibSAFE] for instance.

Don't allocate variables on stack
Another radical solution would be not to

allocate subroutine variables on the stack.
Keep the stack for that which it was created,
that is: storing Instruction Pointer's return
addresses. Allocate variables somewhere else
in the processes memory space.

11

Worms of the future

User stack integrity checkers
Also called canaries, in reference to the

birds used in mines to detect firedamp and
avoid consecutive explosion: should the
canary die, it would signal the presence of
firedamp in the air and all miners would stop
working and evacuate.

The same principle applies to computer
science: the stack is marked with canaries
each time a subroutine is called for. The end
of all subroutines is specifically crafted (at
compilation time) to check canaries on the
stack before calling the return address. If a
stack-allocated buffer became overflowed and
destroyed or altered the canary, the program
gets signaled. [Immunix] implements this
solution through StackGuard.

4.2.1.3 Change computers
By designing a secure computer right from

the boot sequence, one could imagine more
robust security solutions. This is just what
Palladium Next Generation Secure Computing
Base ([NGSCB]) is about. A specially crafted
hardware component, implementing
cryptographic functions that check codes and
configurations. Should one of those not be
compliant, actions could be taken to prevent
them from misbehaving.

One can also imagine new ways of
“understanding” code through heuristics and
detect that it is self modifying: a request for
special authorization from the user through a
trusted path would be needed to accept such
behaviors.

4.2.2 Prevent software from
acting when infected

By using operating systems that implement
privileges, it is possible to control what can be
done by a piece of software. Without the
specific right, the software cannot do much
harm.

If one imagines a way for an application to
request a right to carry out an action, a sort of
trusted path could be put in place for the user
to do so, after verification of the application's
integrity. See the section on NGSCB above.
Such solutions already exist: [TrustedSolaris],
[seLinux] and [RSBAC].

4.3 Storage
There are very few improvements that

could be made on this topic, but we can give
the following hints:

— software executables should never be
writable for the user. Although already
the case on Unix computers, Windows
has still some improvement to make in
this domain (although the latest versions
have almost totally suppressed the
concept of “home user can do
anything”).

— Sign software code on disk,
configuration files, etc. Require the user
to enter a password to unlock the signing
key (again, through a trusted path).

4.4 Transport

4.4.1 Understand code
semantics at firewall level

As a result of strong polymorphism and
encryption, signature based detection is hard,
bordering impossible. Introduce new ways of
“understanding” code through heuristics and
detect whether it is self-modifying: a special
request for authorization from the user through
a trusted path would be required for such
situations. One way to go would be to
reconstruct the actions carried out and not the
way that they are achieved (not the
instructions). This would probably involve
detecting pseudo NOPs with respect to
registers and actions of the code being
analyzed.

4.4.2 Detect uncommon
behavior

IDSes should detect unusual packets that
differ from traditional ones: make signatures
based on traffic shapes rather than content.
This is called spectrum analysis and has just
been described in [Phrack#61] with a new
polymorphic code engine to counter it.

IDSes could also communicate with one
another to increase the sensitivity of detection:
one packet may not trigger an alarm (to avoid
too many false positives), but one packet
received by many IDSes may be a sign of wide
attack (either attacker or worm), coordinated

12

Worms of the future

or otherwise.

For small companies with only one Internet
access point, it may make sense to offer traffic
shaping comparisons between different
companies. Other concerns then arise: how to
preserve confidentiality and anonymity?

4.5 Author's protection
Well, it's hard to act on this subject, but one

of the (incomplete) solutions might be to force
all Internet entry points to be authenticated.
Non-authenticated entry points might, one day,
be considered as SMTP open relays are today,
with dedicated blacklists. That won't prevent
spoofing though. Some sort of mandatory
source-routing might be a solution to trace
back the packet to its entry point in real time.

Unfortunately, this is barely enforceable
today. China has tried to control their citizens
going on Internet, but it's known not to be very
efficient.

5. Conclusion
Well, that's all for the nightmare. In the end,

what is left and what could be done as an
emergency measure?

I'm afraid there's not much that can be
done to approach 100% efficiency. Not now.
Not even close to such a figure.

Probably one of the most promising
security measures would be traffic shaping
IDSes and communication between different
ones. They still need a lot of improvement to
prevent false positives, because false positives
tend to bore administrators who then end up
not listening to alerts anymore.

Artificial Intelligence might be the way to
go, along with cooperation between IDSes
(especially inter-company co-operation).

In this respect, I look further to the work on
IDSes and Honey nets [HNP] as means of
distributed detection.

Despite all the polemics around the
Microsoft initiative (NGSCB), it might be the
most promising solution. Too bad nothing will
be available before the next generation of
worms: it's easier to act bad than good. Maybe
the Open Source community could start a

project to counter Microsoft's initiative and the
evil they see in it (be it real or not) to offer an
alternative to Microsoft's implementation as
soon as possible. A good starting block could
be the code donated by IBM to access the
TCPA chip [TCPA].

A word on vulnerability full disclosure
Full disclosure of vulnerabilities is surely a

way of facilitating the task of exploit writing. On
the other hand, imposing a total blackout on
vulnerability discovery and disclosing it only to
the vendor (or publisher) of a piece of software
is surely a way of; 1- not inciting hackers to
discover holes, and 2-having some hackers
keep them for their group of friends to carry
out their own exploits.

As such, the author of this paper sees
Responsible Vulnerability Disclosure Process
[RVDP] as a good method that hackers could
use to improve Internet Security. As funny as it
is, they all say that their work aims at
improving security, while full zero day
disclosure does just the opposite. RVDP is
just their chance to prove that they can mature
and behave as they say they will.

Good old solution: patch, patch, patch
Last word: patching a system as soon as a

solution has been found to a security
vulnerability has always been the best solution
to avoid security problems. More work in this
domain is probably the best move people
could make in order to avoid being in big
trouble, until other solutions are designed. Oh,
and keep your firewalls well configured as well.

And keep your users informed about
worms and not opening suspicious email
attachments.

13

Worms of the future

6. References
— [6/4] the 6/4 protocol: a P2P protocol ensuring

privacy and anonymity to its users.
http://www.hacktivismo.com/

— [Ada] Ada programming language with variable
bound checking.
http://www.adahome.com/

— [ADM] ADMmutate, shellcode mutation engine
http://www.ktwo.ca/security.html

— [Authenticode] Microsoft Authenticode technology.
http://msdn.microsoft.com/workshop/security/authc
ode/authenticode_node_entry.asp

— [AVDL] Application Vulnerability Description
Language
http://www.avdl.org/

— [AAWP] Modeling the spread of active worms
http://www.hackbusters.net/LaBrea/AAWP.pdf

— [BS1] Bruce Schneier's crypto-gram newsletter of
May 2001: “The Futility of Digital Copy Protection”
http://www.counterpane.com/crypto-gram-
0105.html#3

— [ECC] Ellipctic Curve Cryptography
http://www.google.com/search?q=elliptic+curve+cr
yptography

— [FreeNet] is another privacy and anonymity
network.
http://freenet.sourceforge.net/

— [Gentoo] Gentoo Linux: source only Linux
distribution
http://www.gentoo.org/

— [HNP] The honey net project.
http://project.honeynet.org/

— [IBE] Identity-Based Encryption
http://crypto.stanford.edu/ibe/

— [Immunix] Linux distribution with canaries in stacks
http://www.immunix.org/

— [I-Mode] I-mode
http://www.nttdocomo.co.jp/english/p_s/imode/

— [IrDA] Infrared Data Association
http://www.irda.org/

— [LibSAFE] Avaya's open source library for
protecting the critical elements of stacks.
http://www.research.avayalabs.com/project/libsafe/

— [LNESP] Linux Non-Executable Stack Patch
http://www.openwall.com/ (incorporated in the
OpenWall project)
and an exploit that bypasses this protection:
http://www.insecure.org/sploits/non-
executable.stack.problems.html

— [NEDM] Non executable data memory for Linux

ia64 discussion
https://lists.linuxia64.org/archives/linux-ia64/2002-
January/thread.html#2726

— [NGSCB] Next Generation Secure Computing
Base by Microsoft
https://www.microsoft.com/resources/ngscb/defaul
t.mspx

— [OpenBSD] Free multi-platform 4.4BSD UNIX-like
operating system with proactive security and
integrated cryptography.
http://www.openbsd.org/

— [Phrack#61] Phrack #61, Polymorphic Shellcode
engine
http://www.phrack.org/show.php?p=61&a=9

— [RSBAC] Rule Set Based Access Control for Linux
http://www.rsbac.org/

— [RVDP] Responsible Vulnerability Disclosure
Process.
http://www.globecom.net/ietf/draft/draft-christey-
wysopal-vuln-disclosure-00.html

— [seLinux] NSA seLinux
http://www.nsa.gov/seLinux/

— [SoBig.F] Description of the SoBig.F worm
http://www.wired.com/news/infostructure/0,1377,60
150,00.html

— [TCPA] IBM donated linux device driver code to
access the TCPA chip
http://researchweb.watson.ibm.com/gsal/tcpa/

— [TrustedSolaris] Trusted Solaris environment
http://wwws.sun.com/software/solaris/trustedsolari
s/

— [Warhol] Warhol Worms: The Potential for Very
Fast Internet Plagues
http://www.cs.berkeley.edu/~nweaver/warhol.html

— [Wikipedia] Wikipedia, the free encyclopedia
http://www.wikipedia.org/

— [WXP] Windows XP with rollback OS capabilities
http://www.microsoft.com/windowsxp/default.asp

— [ZKP] Zero Knowledge Proof
http://www.google.com/search?q=zero+knowledge
+proof

14

